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e A K-MHD SYSTEM THAT IS INTRINSICALLY QUASINEUTRAL AND CONSISTENT
WITH MOMENTUM AND ENERGY CONSERVATION IS ADVOCATED HERE

e IN SUCH K-MHD SYSTEM, THE LINEARIZED DRIFT-KINETIC EQUATION ABOUT
AN AXISYMMETRIC EQUILIBRIUM WITH FAST TOROIDAL FLOW HAS THE SAME
DIMENSIONALITY AND IS SIMILAR TO THE AXISYMMETRIC, TIME-DEPENDENT
DRIFT-KINETIC EQUATION IMPLEMENTED IN THE DK4D CODE [Lyons et al. 2015]



ZERO-LARMOR-RADIUS, COLLISIONLESS K-MHD MODEL



ZERO-LARMOR-RADIUS, COLLISIONLESS K-MHD MODEL

e SINGLE ION SPECIES OF UNIT CHARGE

e ZERO-LARMOR-RADIUS-LIMIT AND ZERO COLLISION FREQUENCIES
e NO MASS RATIO APPROXIMATIONS

e MEAN FLOW VELOCITY OF THE ORDER OF THE SOUND SPEED

e KINETIC PRESSURES COMPARABLE TO MAGNETIC PRESSURE



ZERO-LARMOR-RADIUS, COLLISIONLESS K-MHD MODEL

e SINGLE ION SPECIES OF UNIT CHARGE

e ZERO-LARMOR-RADIUS-LIMIT AND ZERO COLLISION FREQUENCIES
e NO MASS RATIO APPROXIMATIONS

e MEAN FLOW VELOCITY OF THE ORDER OF THE SOUND SPEED

e KINETIC PRESSURES COMPARABLE TO MAGNETIC PRESSURE

THEN, u; — u, — u (COMMON, SINGLE-FLUID MEAN VELOCITY)
BESIDES n, = n. =n (FLUID QUASINEUTRALITY)



ZERO-LARMOR-RADIUS MAGNETOFLUID SYSTEM
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n + V-(nu) = 0, p = (m;+me)n
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PS“" = pybb + p. (1—bb)
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f(o)(w, x,t) = folw),wy,x,t)

where
w = Vv — ulxt) = w b(x,t) + w, [cosa e(x,t) +sina ey(x,1)]
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ZERO-LARMOR-RADIUS DRIFT-KINETIC EQUATION AND FLUID CLOSURE

fs(o)(w,x,t) = folw),wi,x,t)

where
w = Vv — u(x,t) = w b(x,t) + wy [cosa e(x,t)+sina eyx,1)]
afs afs b - <v ) PSCGL> UJ%_ afs
b) - — w(bb) : ——b-VInB
5 + (u+w” ) o + n w(bb) : (Vu) 5 VIn o, +
w | ) 8fs
+ = (bb—1): (Vu) + wyb - VIn B il
and
Py = ms/d3w wﬁ fs = 2mm; /OOO dw, w, /_O; dwy| wﬁ 1,

M _ _
Del = 7/d3W wi fs = Wms/ooode wL/_o;de wi fs



o THIS NON-LINEAR, FAST-DYNAMICS, K-MHD SYSTEM IS OF THE "FULL-f" KIND,
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WITH DISTRIBUTION FUNCTIONS THAT CAN BE ARBITRARILY DIFFERENT FROM
MAXWELLIANS (HOWEVER, IT WILL BE LINEARIZED ABOUT A MAXWELLIAN
EQUILIBRIUM)

e DEFINING n!" = jd’w fo, p, = (my/3)Id*w w* f; [i.e. ps = (ps +2ps1)/3 ]
AND qs| = (m3/2)fd3w w? w fs , THE 1, w)| AND w? MOMENTS OF THE
DRIFT-KINETIC EQUATION YIELD

kin
on';

ot V@ =0 = aen=n
/d3W w fs = 0

3 [9ps CGL

eV + PEL (V) + V() = 0



LINEAR ANALYSIS
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AXISYMMETRIC, MAXWELLIAN EQUILIBRIUM WITH TOROIDAL FLOW

By = Vi x V¢ + (1) VC . jo—jiwxvc—mwc

u = Q) R* V¢, (up-Viug = —Q* R VR, V-uy = (bobg): (Vug) =0

_ ms\3/2 n MW
fso = fuso = <—> TO/Q eXp (— )

1 e RQQQ
T = To(), ng = no(y,R) = N() exp {;W[LEJOF(% )Jr Te()(%;} , po = (mi+me)ng
V'(nouo) :O, VX(U()XBO) =0
jox By = po (ug-V)uy + Ving(Tio + 1) = —% ([ji + AW) = 6[nO(T§)¢+ L) ‘R



LINEARIZED MAGNETOFLUID SYSTEM
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LINEARIZED DRIFT-KINETIC EQUATION
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LINEARIZED DRIFT-KINETIC EQUATION

FOR A TOROIDAL FOURIER MODE, 0/0¢ =in :
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USING AS PHASE-SPACE COORDINATES THE KINETIC ENERGY AND THE MAGNETIC
MOMENT,
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SUMMARY



e A KINETIC-MHD MODEL IS PROPOSED TO ANALIZE THE LINEAR STABILITY OF
AXISYMMETRIC EQUILIBRIA WITH FAST TOROIDAL FLOW

e THE MAGNETOFLUID PART OF THE SYSTEM COMPRISES THE LINEARIZED
FORMS OF THE FARADAY-OHM LAW, THE CONTINUITY EQUATION AND THE
MOMENTUM CONSERVATION EQUATION, THAT EVOLVE B;, n; AND wu

e THE KINETIC PART YIELDS THE FLUID CLOSURES p,; AND p,;;, AS MOMENTS
OF THE GYROPHASE-INDEPENDENT DISTRIBUTION FUNCTIONS f,,. THESE
EVOLVE WITH LINEARIZED DRIFT-KINETIC EQUATIONS THAT ARE CONSISTENT
WITH THE FLUID CONSERVATION LAWS. FOR A GIVEN TOROIDAL MODE, THE
DKE’'S DEPEND ON THREE PHASE-SPACE COORDINATES (wj,w.,¢,) AND TIME

e THE DKE PHASE-SPACE DIMENSIONALITY CAN BE REDUCED TO (¢,/¢,) AT
CONSTANT x4, BY USING ENERGY AND MAGNETIC MOMENT COORDINATES



